Friday, January 28, 2011

Mathematics II


Mathematics II
BITxxx
Year: I                                                                                                                                   Semester: II
Teaching Schedule
Hour/ Week
Examination Scheme
Theory
Tutorial
Practical
Internal Assessment
Final
Total
3
2
-
Theory
Practical*
Theory**
Practical
100
20
-
80
-
*Continuous
** Duration: 3 hours
1. Differential Equations of the first order                                 8 hrs
            Variable separable
            Exact Differential equations
            Homogeneous equations
            Integrating factors
            Method of variation of parameters
            Simultaneous differential equations
            Equations of higher degree
            Some applications

2. Linear Differential Equations                                                   5 hrs
                2.1 Homogeneous equations of second order
                2.2 Methods of determining particular integrals and application
                2.3 Vibrations of a particle (SHM)

3. Laplace Transform
                3.1 Definition
                3.2 Laplace transform of some elementary functions
                3.3 Properties of laplace transforms
                3.4 Transforms of derivatives
                3.5 Definition of inverse transforms
                3.6 Properties of inverse transform
                3.7 Use of Partial fractions
                3.8 Use of laplace transforms in solving ordinary diff. Equations

4. Fourier Series and integrals                                                       9 hrs.
                4.1 Definitions and derivations
                4.2 Odd and Even functions
                4.3 Half range series
                4.4 Change of scale
                4.5 The Fourier Integral and Fourier Transforms

5. Partial Differential Equations                                                   8 hrs
                5.1 Basic concepts
                5.2 Formation of P.D. Equations
                5.3 Solution of a P.D. Equations (simple cases)
                5.4 The wave equation, Poisson’s equation, Own dimensional heat flow &  
                  Laplace

6. Functions of a Complex Variable                                                             6hrs
                6.1 Basic definitions
                6.2 Functions of a complex variable
                6.3 Limits, continuity & differentiation
                6.4 Cauchy Riemann Equations
                6.5 Analytic Functions
                6.6 Harmonic Functions
                6.7 Complex exponential, trigonometric and hyperbolic function

7. Complex Series, Residues and poles                                                         3 hrs
                7.1 Taylor’s Theorem
                7.2 Laurent’s Series
                7.3 Zeros, Singularities and poles
                7.4 Residues

Text Book

  1. Engineering Mathematics Vol II.:- S.S. Sastry, Prentice Hall of India.

Reference Texts

  1. Fraleigh, J.B. Calculus with Analytic Geometry, Addison Wesley pub. Co. Inc (1980)
  2. Bajpai, A.C., Calus, I.M and fairley, J.A., Mathematics for Engineering & scientists, Vol I, John wiley & sons (1973)
  3. Goldstain, I.J. Lay, D.C. and schinder, D.I. Calculus and its Applications, Prentice –Hall Inc (91977)
  4. Spiegel, M.R. Theory and problems of advanced calculus, scham publishing co
  5. Srivastava, R.S.L. Engineering Mathematics, Vol II, Tata, McGraw hill publishing co, (1980)
  6. Potter & Goldberg, Mathematical Methods, Prentice Hall of India.

No comments:

Post a Comment