Intersection and Information Technology and Public Health. The applications of IT in public health are numerous and varied. One particularly important example, however, is the use of Geographical Information Systems (GIS). Using GIS, public health officials can create very effective procedures to do their tasks using information technology. Doing a feedback loop they can: measure, plan, act, and measure again. In this manner, officials can identify a problem (e.g., cancer) by measuring data from a registry. Further, from the health care providers community, they can select a target population (e.g., breast cancer) and develop an implementation strategy for an intervention plan with the health care providers. Finally, by measuring again, GIS allows public health officials to evaluate the impact of the implementation plan on that data registry.
GIS is thus an information technology which can help improve health care and public health in many areas such as disease tracking, outbreak investigations, geostatistical analysis, and routing of health workers. As a means of tracking, residential zip codes of patients who appear at different clinics can be plotted with signs and symptoms of a selected diagnosis (e.g., upper respiratory infections [URI]). URIs are a marker for some toxic biological agents. Furthermore, community outbreaks of infectious diseases such as measles can be quickly analyzed then using GIS tools. Color shading can indicate areas with certain levels of morbidity probability or likeliness of getting sick. Areas that require immediate interventions such as immunizations can be depicted by a different shade. Geostatistical analysis is one of the most powerful tools available to a public health department. With a relatively small number of sampling points, predictive maps can be quickly produced to provide the likely extent of threats to public health. This mode of forecasting allows for the effective and efficient allocation of health care resources in a community.
GIS can also help create disease focused databases representing patients from a specific userdefined geographic area. In this fashion, the impact of a toxic release or exposure against a target population can be measured. GIS is a powerful tool for supplying immediate visualization of the likely geographic exposures, allows an analyst to examine the various variables that might effect the "fallout" of sprayings and to estimate its extent. Through the use of Computer Aided Design tools and GIS, medical centers as well as clinics are increasingly monitoring their patient care environments to assist managers evaluate risk for highly contagious diseases and implement control and isolation programs.
GIS helps health organizations visualizing diagnostic and geographic information simultaneously and dynamically. Over 14,000 ICD 9 and 10 codes describe medical diagnosis, treatment, and medical events worldwide. Public health clinics, hospitals, managed care, and health insurers use this application to conduct data mining on very large clinical and administrative data warehouses.
In public health education, GIS can be an analytical tool of choice for health promotions staff when deciding where to target the public health messages and warnings. GIS is also used to create interactive maps for health organizations required to publish information to the public. Health organizations require interactive maps depicting geographical areas and regions where infectious diseases and threats to the public's health are imminent.
No comments:
Post a Comment